A Numerical Investigation of Metamaterial Antireflection Coatings
نویسندگان
چکیده
Electromagnetic metamaterials have emerged as a new class of effective media where exotic properties are determined from structural geometry and dimensions of the basic building blocks, or meta-atoms. Through such a bottom-up approach, metamaterials have found applications in the construction of terahertz functional devices and components with unprecedented performance. In this paper, we numerically investigate planar metamaterials that function as antireflection coatings for dielectric surfaces, suppressing the reflection and enhancing the transmission. We show in detail how the metamaterial structures and losses affect the antireflection performance. We also show the angular dependence of metamaterial antireflection for both transverse electric and transverse magnetic polarizations, which reveals a tunable Brewster’s angle behavior.
منابع مشابه
The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow.
We report on the design, simulation, fabrication, and characterization of a novel two layer anti-reflective coating (ARC) based on a plasmonic metamaterial and a dielectric. Promoted by the strong material dispersion of the plasmonic metamaterial, our novel concept (called hybrid ARC) combines two possible arrangements for layers in an anti-reflection coating into a single structure; albeit at ...
متن کاملPreparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings
Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...
متن کاملStanding Wave Field Distribution in Graded-Index Antireflection Coatings
Standing wave field distributions in three classic types of graded-index antireflection coatings are studied. These graded-index antireflection coatings are designed at wavelengths from 200 nm to 1200 nm, which is the working wavelength range of high energy laser system for inertial-fusion research. The standing wave field distributions in these coatings are obtained by the numerical calculatio...
متن کاملLoss/gain-induced ultrathin antireflection coatings
Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as i...
متن کاملSubwavelength metal grating metamaterial for polarization-selective optical antireflection coating
A metamaterial structure consisting of a one-dimensional metal/air-gap subwavelength grating is investigated for optical antireflection for a germanium surface in the infrared regime. For incident light polarized perpendicularly to the metal grating lines, the metamaterial exhibits effective dielectric properties, and the Fabry–Perot-like resonance results in the elimination of the reflection a...
متن کامل